Психологами установлено, что наглядность необходима для обеспечения целого ряда дидактических функций: принятия учащимися учебной задачи, мотивирования ее, «настройки» учащегося на процесс обучения, обеспечения школьнику общей ориентировки для его будущей деятельности.
В методике преподавания математики выделяют следующие функции наглядности.
1.
Познавательная функция.
Методической целью реализации этой функции является формирование познавательного образа изучаемого объекта. Это формирование происходит постепенно от простого к сложному, при этом мысль учащегося направляется по кратчайшим и наиболее доступным путям к целостному восприятию объекта. Ценность этой функции состоит в предоставлении учащимся кратчайшего и доступного пути осмысления изучаемого материала.
2. Функция управления деятельностью учащегося.
При реализации этой функции средства и приемы наглядности участвуют в следующих действиях:
а) ориентировочных. Например, построение чертежа, соответствующего рассматриваемому условию, или внесение в данный чертеж дополнительных элементов;
б) контролирующих, которые направлены на обнаружение ошибок при сравнении чертежа (схемы, графика), выполненного учащимся, с помещенными в учебнике, или в выяснении свойств, которые должен сохранить объект при тех или иных преобразованиях;
в) коммуникационных, которые отвечают той стадии реализации функции управления деятельностью учащегося, которая соответствует исследованию полученных им результатов. Выполняя эти действия, учащийся по собственному опыту объясняет другим или самому себе суть изучаемого явления или факта по построенной модели.
3. Интерпретационная функция
.
Суть этой функции заключается в том, что один и тот же объект можно выразить с помощью разных знаков и моделей. Например, окружность можно задать с помощью пары (центр и радиус), уравнением относительно осей координат, с помощью рисунка или чертежа.
Однако в одних случаях удобно воспользоваться ее аналитическим выражением, в других – геометрической моделью. Рассмотрение каждой из этих моделей, которая в определенных условиях может служить средством наглядности, является ее интерпретацией. Чем значимей объект, тем желательней дать большее количество интерпретаций, раскрывающих познавательный образ с разных сторон.
4. Эстетическая функция.
Эстетика – красота. Она может быть постигаемая органами чувств, то есть формальная красота, и интеллектуальная, доступная только разуму. В математическом доказательстве должны быть соразмерны логическая и наглядная части. Так, благодаря простой наглядной модели, становится ясной суть доказательства, а логика уточняет лишь некоторые детали доказательства.
Для любого математического объекта существует возможность его «визуализации», то есть создания его наглядного образа. Красивые формулы, задачи, графики функций, многоугольники и т. п. являются объектами с эстетическими свойствами во внешнем облике.
Различные рисунки, чертежи, схемы, таблицы являются эстетическими объектами. Они отображают логику процессов, поэтому углубляют познание, способствуют раскрытию внутренней красоты математики.