Методика использования визуальных моделей при обучении решению задач на движение

Современное образование » Методика использования визуальных моделей в обучении школьников решению математических задач » Методика использования визуальных моделей при обучении решению задач на движение

Страница 2

Приведем пример такой работы.

Велосипедист выехал из пункта А и через 7 часов прибыл в пункт В, который находится на расстоянии 70 км от пункта А. Изобразите в координатной системе «время-путь» график движения велосипедиста.

В задаче с данным условием целесообразно выбрать пункт А так, чтобы он совпадал с началом координат. Далее нужно варьировать условия, изменяя скорость, время движения, направление движения, точку отсчета пути, точку отсчета времени.

Велосипедист выехал из пункта А и через 7 часов прибыл в пункт В. Изобразите в координатной системе «время-путь» график движения велосипедиста, если известно, что он двигался со скоростью 10 км в час.

При таких условиях график останется тот же самый, здесь нужно акцентировать внимание учеников на то, что график всегда выражает три параметра: расстояние, время, скорость.

Велосипедист выехал из пункта А и через 7 часов прибыл в пункт В, который находится на расстоянии 70 км от пункта А. Второй велосипедист выехал на час позже, и двигался с той же скоростью. Изобразите в координатной системе «время-путь» графики движения велосипедистов.

В этой задаче график движения второго велосипедиста сдвигается параллельным переносом на единицу вниз. Аналогично нужно варьировать начало отсчета пути, пути и времени одновременно. Такое изменение формирует представления о местоположении точки отсчета, которое необходимо для умения моделировать данным способом задачи более сложного содержания.

Велосипедист выехал из пункта А и через 7 часов прибыл в пункт В, который находится на расстоянии 70 км от пункта А. Второй велосипедист выехал на час позже, и прибыл в пункт В одновременно с первым. Изобразите в координатной системе «время-путь» графики движения велосипедистов.

В данной задаче варьируется скорость второго велосипедиста. При изменениях такого рода формируется понимание зависимости угла наклона графика от скорости.

Велосипедист выехал из пункта А и через 7 часов прибыл в пункт В, который находится на расстоянии 70 км от пункта А. Второй велосипедист выехал из пункта В одновременно с первым, и прибыл в А когда первый прибыл в В. Изобразите в координатной системе «время-путь» графики движения велосипедистов.

При данных условиях формируется умение выбирать положительное направление движения. Здесь же можно поставить вопрос о времени или месте встречи велосипедистов, что даст первоначальные представления о сути метода. В данной задаче возможны еще случаи варьирования условий, но вышеуказанные составляют основу, так как остальные из них являются комбинацией первоначальных.

Итак, основополагающими являются умения выбирать точку отсчета по пути и по времени, положительное направление движения, понятие о зависимости угла наклона графика от скорости движения объекта. Достижение всего вышеуказанного происходит в процессе решения задач, подобных приведенным.

Этап обучения графическому моделированию задач на движение во многом опирается на умения, сформированные на предыдущем этапе. Но в данной части есть свои, специфические для данного этапа, особенности. Они заключаются в том, что условия, формулируемые в задаче, не позволяют однозначно построить график отдельного движущегося объекта, так как в них не задаются все те параметры, которые позволяли бы это сделать. Тем не менее, модель должна отображать существенные стороны задачи. Например, условия задачи не позволяют однозначно построить графики двух движущихся объектов, но из них ясно, что если один движется быстрее другого, то и угол наклона у него должен быть больше. Кроме того, на данном этапе нужно сформировать умение рационально строить модели. Этого можно добиться, давая при удобном случае рекомендации по построению модели. К таким рекомендациям можно отнести следующие [3]:

если в задаче несколько объектов движутся на встречу одному, то удобнее в начало координат поместить эти несколько объектов;

если в задаче движение начинается в какое-то определенное время суток, которое не влияет существенно на саму задачу, то при построении модели лучше полагать, что движение началось в момент времени;

Страницы: 1 2 3 4 5

Навигация