Методика построения визуальных моделей при обучении решению текстовых задач

Современное образование » Методика использования визуальных моделей в обучении школьников решению математических задач » Методика построения визуальных моделей при обучении решению текстовых задач

Страница 4

Площадь прямоугольника BEFC соответствует пути пройденному протии течения реки: . Площадь прямоугольника ABFC определяет весь путь пройденный лодкой: .

В то же время, , , , тогда имеем: 60=30, , 35:2 = 17,5 – скорость движения лодки по течению, 17,5 – 15 = 2,5 – скорость течения реки.

Использование двумерных диаграмм в курсе алгебры опирается на следующую теорему: если через произвольную точку E диагонали AC прямоугольника ABCD проведены прямые FM и HK параллельные соответственно AB и AD, образовавшиеся при этом прямоугольники HBME и FEKD будут равновелики, прямоугольники ABMF и AHKD тоже равновелики, кроме того отрезки FH, DB и KM параллельны.

Приведем пример решения задачи с использованием данной теоремы.

Задача 3. Один наборщик работал над выполнением заказа 9 часов. После чего закончить работу было поручено второму наборщику, который закончил работу за 4 часа 48 минут. Если бы оба наборщика работали вместе, то они выполнили бы работу за 6 часов 40 минут. За сколько времени каждый выполнил бы работу, работая отдельно?

Работа, выполненная наборщиком, равна произведению его часовой выработки на число выработанных им часов и, следовательно, может быть представлена площадью прямоугольника.

Проведем горизонтальный отрезок (рис. 3) AB произвольной длины (почему мы можем длину выбирать произвольно?), пусть он изображает часовую выработку обоих наборщиков вместе. Перпендикулярно ему проведем два луча AA1 и BB1. Единичный отрезок будет обозначать один час работы. Отметим время на каждом из этих лучей, начиная от нуля. На луче АА1 отметим точку М, указывающую 6 часов 40 минут и проведем отрезок МР. Площадь прямоугольника АМРВ обозначает количество всей работы. Но эта работа выполнялась наборщиками поочередно, поэтому теперь следует построить два прямоугольника изображающих соответственно работу каждого наборщика отдельно. Оба прямоугольника вместе должны быть равновелики прямоугольнику АМРВ. Известны высоты этих прямоугольников (чему они равны?). Сумма оснований искомых прямоугольников должна составлять отрезок AB (почему?), так как часовая выработка при совместной работе двух наборщиков равна сумме часовых выработок каждого из них.

Задача сводится к разбиению отрезка AB на два таких отрезка АС и СВ, чтобы сумма площадей двух прямоугольников ACLK и CBRQ была равна площади прямоугольника АМРВ.

На луче BB1 отметим точку Т (ВТ=АК) изображающую 9 часов, на луче АА1 отметим точку S (AS=BR) изображающую 4 часа 48 минут. Проведем отрезок ST. Точка N пересечения отрезков ST и МР определяет размеры MN и NP оснований искомых прямоугольников. Найденные прямоугольники ACLK и CBRQ равновелики прямоугольнику АМРВ.

Для того чтобы получить ответ задачи достаточно провести прямую AN до пересечения в точке D с лучом BB1, и прямую BN до пересечения в точке Е с лучом АА1. Длины отрезков будут искомыми величинами. Ответ 12 и 15.

Если построения выполнить на миллиметровой бумаге, взяв 1 мм за час, то данный ответ можно считать обоснованным. Если чертеж выполняется от руки не на миллиметровой бумаге и без масштаба, то для получения ответа требовались бы вычисления использующие подобие трех пар треугольников: SMN и TPN, ADB и ANC, BEA и BNC. Откуда MN:MP = MS:PT. Но

MS=AM – AS =6 ч 40 мин – 4ч 48 мин = 112 мин,

PT=BT – PB = 9ч – 6ч 40 мин =140 мин.

Следовательно, MN:MP = 4:5. Далее BD:CN = AB:AC = MN:MP = 9:4. Отсюда BD = = 6 ч 40 мин =15 ч. Аналогично, АЕ = 12 часов.

Страницы: 1 2 3 4 5 6

Навигация