Для того, чтобы решать задачи с помощью данного метода, нужно уметь еще строить результирующий график совместной работы. Работа может выполняться ее участниками в различном направлении (как «трубы» в предыдущей задачи) или в одном направлении.
Приведем пример задачи, где работа выполняется в одном направлении.
Ванна заполняется холодной водой за 6 минут 40 секунд, горячей – за 8 минут. Кроме того, если из полной ванны вынуть пробку, вода вытечет за 13 минут 20 секунд. Сколько времени понадобится, чтобы наполнить ванну полностью, при условии, что открыты оба крана, но ванна не заткнута пробкой?
Пусть отрезок OD (рис. 5) изображает весь объем, тогда отрезок OC график работы крана с холодной водой, отрезок DB – с горячей. Пусть M точка пересечения этих графиков, из рисунка видно, что к моменту времени соответствующему точке M, оба крана, работая совместно, выполнят весь объем работы. Тогда проведем отрезок BK через точку M перпендикулярно оси абсцисс, так как к моменту времени B (или К) весь объем работы будет выполнен, то отрезок OB (или DK) будет графиком совместной работы. OP график, соответствующий работе по вытеканию воды. Из графиков OB и OP, с помощью метода описанного в предыдущей задаче получаем результирующий график. Из рисунка видно, что ванна заполнится через 5 минут.
|
Данный метод используется для решения достаточно узкого класса задач, в которых дано время, затрачиваемое на работу каждым субъектом в отдельности, и требуется найти их общую производительность. Алгоритм арифметического решения этих задач прост: выражается количество работы, выполняемой за час одним субъектом, затем результаты всех складываются – это будет общая производительность. Графическая модель помогает представить наглядно решение задачи, кроме того, она подводит к графическому методу решения более сложных задач, который будет рассмотрен в следующем параграфе.