Методика применения визуальных моделей при обучении решению задач с параметрами

Современное образование » Методика использования визуальных моделей в обучении школьников решению математических задач » Методика применения визуальных моделей при обучении решению задач с параметрами

Страница 1

Для решения некоторых аналитических задач можно использовать систему координат. Целесообразность ее использования можно аргументировать, ссылаясь на следующую цитату из статьи В. А. Далингера [2]: «Созданный Рене Декартом метод имеет огромное значение не только в научных открытиях. Он привнес значительный эффект и в процесс обучения математике. Эффект этот в первую очередь состоит в том, что координатный метод дает возможность многим абстрактным алгебраическим объектам, изучение которых строится на словесно-логической основе, дать геометрическую интерпретацию, позволяющую опираться на наглядно-образное, визуальное мышление».

Среди множества всех задач с параметрами можно выделить целый класс задач, которые можно решить с использованием графических методов визуализации. Как и в случае с текстовыми задачами этот метод не является непосредственно наглядным, а, следовательно, для его усвоения требуется предварительная работа по формированию навыков работы с графическими моделями. Формирование самих по себе графических представлений и умений учащихся является задачей школьного курса математики, но данная тема (использование графических свойств для решения задач с параметрами) имеет свои специфические аспекты, которые заключаются в обобщении свойств графиков. Так, например, у учеников сформированы представления о зависимости угла наклона линейной функции и коэффициента при неизвестном в ее аналитическом выражении, но если данный коэффициент задан параметром, то мы получаем множество прямых с углами наклона от 0 до , которое условно называют «вращающаяся прямая».

Среди методов визуализации, применяемых при решении задач с параметрами, можно выделить следующие: 1) движущаяся прямая; 2) вращающаяся прямая; 3) координатные плоскости «неизвестное-параметр» и «параметр-неизвестное»; 4) применение свойств графиков функций.

Обучать применению данных методов целесообразнее в указанном порядке, так как каждый последующий метод является более сложным, и в некоторых случаях содержит идеи предыдущих.

Метод «Движущаяся прямая».

Данный метод позволяет решать всевозможные задачи с параметрами, которые заданы в виде (или преобразованы к нему) f(x) = a. Метод основывается на том, что простейшее параметрическое уравнение y = a задает множество всех прямых параллельных оси абсцисс.

Построение данной графической модели предполагает умение строить графики функций. На подготовительном этапе обучения моделированию нужно актуализировать знания связанные с построением графиков функций и подвести к графической модели параметрического уравнения y = a. Реализовать данные задачи можно через систему упражнений, которая предполагает построение графиков функций и работу с ними. Работа с графиками подразумевает ответ на следующие вопросы: назовите множество значений функции; сколько раз и почему функция принимала значение В (под В подразумевается конкретное числовое значение причем его нужно варьировать, в том числе брать его не из множества значений функции); каким должно быть значение а, чтобы уравнение y = a задавало касательную к функции.

Этап обучения моделированию является обобщением первого этапа. Здесь нужно сформировать представление о зависимость между значением параметра и положением прямой y = a. На предыдущем этапе ученики отвечали на вопрос о том, сколько раз функция принимает конкретное значение, опираясь на это, нужно сформулировать общее правило ответа на этот вопрос, сопровождая его соответствующими иллюстрациями. Таким образом, возникает прямая, положение которой зависит от величины, не являющейся заранее определенной и, следовательно, уравнение y = a задает множество прямых.

Иногда учащиеся не понимают смысла параметров. Это связанно с его двойственностью: с одной стороны параметр обозначает конкретное число, с другой – параметр изменяет свои значения. Указанный выше подход опирается в начале на конкретные значения, затем изменению значений соответствует движение прямой, это помогает наглядно раскрыть смысл параметра.

Страницы: 1 2 3 4 5 6

Навигация